Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Nat Genet ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641644

RESUMO

Methylation quantitative trait loci (mQTLs) are essential for understanding the role of DNA methylation changes in genetic predisposition, yet they have not been fully characterized in East Asians (EAs). Here we identified mQTLs in whole blood from 3,523 Chinese individuals and replicated them in additional 1,858 Chinese individuals from two cohorts. Over 9% of mQTLs displayed specificity to EAs, facilitating the fine-mapping of EA-specific genetic associations, as shown for variants associated with height. Trans-mQTL hotspots revealed biological pathways contributing to EA-specific genetic associations, including an ERG-mediated 233 trans-mCpG network, implicated in hematopoietic cell differentiation, which likely reflects binding efficiency modulation of the ERG protein complex. More than 90% of mQTLs were shared between different blood cell lineages, with a smaller fraction of lineage-specific mQTLs displaying preferential hypomethylation in the respective lineages. Our study provides new insights into the mQTL landscape across genetic ancestries and their downstream effects on cellular processes and diseases/traits.

2.
Lipids Health Dis ; 23(1): 98, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570797

RESUMO

Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Análise da Expressão Gênica de Célula Única , Metabolismo dos Lipídeos/genética , Células Endoteliais/metabolismo , Fosfolipídeos/metabolismo , Colesterol/metabolismo , Fosfatidilcolinas
4.
Photochem Photobiol Sci ; 23(4): 711-718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430370

RESUMO

BACKGROUND: Previous studies have shown that visible light (VL), especially blue light (BL), could cause significant skin damage. With the emergence of VL protection products, a harmonization of light protection methods has been proposed, but it has not been widely applied in the Chinese population. OBJECTIVE: Based on this framework, we propose an accurate and simplified method to evaluate the efficacy of BL photoprotection for the Chinese population. METHODS: All subjects (n = 30) were irradiated daily using a blue LED light for four consecutive days. Each irradiation dose was 3/4 MPPD (minimum persistent pigmentation darkening). The skin pigmentation parameters, including L*, M, and ITA°, were recorded. We proposed the blue light protection factor (BPF) metric based on the skin pigmentation parameters to evaluate the anti-blue light efficacies of different products. RESULTS: We found that the level of pigmentation rose progressively and linearly as blue light exposure increased. We proposed a metric, BPF, to reflect the anti-blue light efficacy of products based on the linear changes in skin pigment characteristics following daily BL exposure. Moreover, we discovered that the BPF metric could clearly distinguish the anti-blue light efficacies between two products and the control group, suggesting that BPF is an efficient and simple-to-use metric for anti-blue light evaluation. CONCLUSION: Our study proposed an accurate and simplified method with an easy-to-use metric, BPF, to accurately characterize the anti-blue light efficacies of cosmetic products, providing support for further development of anti-blue light cosmetics.


Assuntos
60440 , Pigmentação da Pele , Humanos , Luz , China , Pele/efeitos da radiação , Raios Ultravioleta
5.
Circ Res ; 134(7): 875-891, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440901

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a connective tissue disease that can serve as a model to study vascular changes in response to inflammation, autoimmunity, and fibrotic remodeling. Although microvascular changes are the earliest histopathologic manifestation of SSc, the vascular pathophysiology remains poorly understood. METHODS: We applied spatial proteomic approaches to deconvolute the heterogeneity of vascular cells at the single-cell level in situ and characterize cellular alterations of the vascular niches of patients with SSc. Skin biopsies of patients with SSc and control individuals were analyzed by imaging mass cytometry, yielding a total of 90 755 cells including 2987 endothelial cells and 4096 immune cells. RESULTS: We identified 7 different subpopulations of blood vascular endothelial cells (VECs), 2 subpopulations of lymphatic endothelial cells, and 3 subpopulations of pericytes. A novel population of CD34+;αSMA+ (α-smooth muscle actin);CD31+ VECs was more common in SSc, whereas endothelial precursor cells were decreased. Co-detection by indexing and tyramide signal amplification confirmed these findings. The microenvironment of CD34+;αSMA+;CD31+ VECs was enriched for immune cells and myofibroblasts, and CD34+;αSMA+;CD31+ VECs expressed markers of endothelial-to-mesenchymal transition. The density of CD34+;αSMA+;CD31+ VECs was associated with clinical progression of fibrosis in SSc. CONCLUSIONS: Using spatial proteomics, we unraveled the heterogeneity of vascular cells in control individuals and patients with SSc. We identified CD34+;αSMA+;CD31+ VECs as a novel endothelial cell population that is increased in patients with SSc, expresses markers for endothelial-to-mesenchymal transition, and is located in close proximity to immune cells and myofibroblasts. CD34+;αSMA+;CD31+ VEC counts were associated with clinical outcomes of progressive fibrotic remodeling, thus providing a novel cellular correlate for the crosstalk of vasculopathy and fibrosis.


Assuntos
Células Progenitoras Endoteliais , Escleroderma Sistêmico , Humanos , Proteômica , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/patologia , Fibrose , Miofibroblastos/patologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38369780

RESUMO

Hepatic stellate cells (HSCs) are critical regulator contributing to the onset and progression of liver fibrosis. Chronic liver injury triggers HSCs to undergo vast changes and trans-differentiation into a myofibroblast HSCs, the mechanism remains to be elucidated. This study investigated that the involvement of hydroxymethylase TET1 (ten-eleven translocation 1) in HSC activation and liver fibrosis. It is revealed that TET1 levels were downregulated in the livers in mouse models of liver fibrosis and patients with cirrhosis, as well as activated HSCs in comparison to quiescent HSCs. In vitro data showed that the inhibition of TET1 promoted the activation HSC, whereas TET1 overexpression inhibited HSC activation. Moreover, TET1 could regulate KLF2 (Kruppel-like transcription factors) transcription by promoting hydroxymethylation of its promoter, which in turn suppressed the activation of HSCs. In vivo, it is confirmed that liver fibrosis was aggravated in Tet1 knockout mice after CCl4 injection, accompanied by excessive activation of primary stellate cells, in contrast to wild-type mice. In conclusion, we suggested that TET1 plays a significant role in HSC activation and liver fibrosis, which provides a promising target for anti-fibrotic therapies.

7.
Transl Res ; 267: 25-38, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38181846

RESUMO

High-altitude heart disease (HAHD) is a complex pathophysiological condition related to systemic hypobaric hypoxia in response to transitioning to high altitude. Hypoxia can cause myocardial metabolic dysregulation, leading to an increased risk of heart failure and sudden cardiac death. Aldehyde dehydrogenase 2 (ALDH2) could regulate myocardial energy metabolism and plays a protective role in various cardiovascular diseases. This study aims to determine the effects of plateau hypoxia (PH) on cardiac metabolism and function, investigate the associated role of ALDH2, and explore potential therapeutic targets. We discovered that PH significantly reduced survival rate and cardiac function. These effects were exacerbated by ALDH2 deficiency. PH also caused a shift in the myocardial fuel source from fatty acids to glucose; ALDH2 deficiency impaired this adaptive metabolic shift. Untargeted/targeted metabolomics and transmission electron microscopy revealed that ALDH2 deficiency promoted myocardial fatty-acid deposition, leading to enhanced fatty-acid transport, lipotoxicity and mitochondrial dysfunction. Furthermore, results showed that ALDH2 attenuated PH-induced impairment of adaptive metabolic programs through 4-HNE/CPT1 signaling, and the CPT1 inhibitor etomoxir significantly ameliorated ALDH2 deficiency-induced cardiac impairment and improved survival in PH mice. Together, our data reveal ALDH2 acts as a key cardiometabolic adaptation regulator in response to PH. CPT1 inhibitor, etomoxir, may attenuate ALDH2 deficiency-induced effects and improved cardiac function in response to PH.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Hipóxia , Animais , Camundongos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Compostos de Epóxi , Insuficiência Cardíaca
8.
J Neurol ; 271(3): 1385-1396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37980296

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with complex genetic architecture. Emerging evidence has indicated comorbidity between ALS and autoimmune conditions, suggesting a potential shared genetic basis. The objective of this study is to assess the prognostic value of systematic screening for rare deleterious mutations in genes associated with ALS and aberrant inflammatory responses. METHODS: A discovery cohort of 494 patients and a validation cohort of 69 patients were analyzed in this study, with population-matched healthy subjects (n = 4961) served as controls. Whole exome sequencing (WES) was performed to identify rare deleterious variants in 50 ALS genes and 1177 genes associated with abnormal inflammatory responses. Genotype-phenotype correlation was assessed, and an integrative prognostic model incorporating genetic and clinical factors was constructed. RESULTS: In the discovery cohort, 8.1% of patients carried confirmed ALS variants, and an additional 15.2% of patients carried novel ALS variants. Gene burden analysis revealed 303 immune-implicated genes with enriched rare variants, and 13.4% of patients harbored rare deleterious variants in these genes. Patients with ALS variants exhibited a more rapid disease progression (HR 2.87 [95% CI 2.03-4.07], p < 0.0001), while no significant effect was observed for immune-implicated variants. The nomogram model incorporating genetic and clinical information demonstrated improved accuracy in predicting disease outcomes (C-index, 0.749). CONCLUSION: Our findings enhance the comprehension of the genetic basis of ALS within the Chinese population. It also appears that rare deleterious mutations occurring in immune-implicated genes exert minimal influence on the clinical trajectories of ALS patients.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/diagnóstico , Esclerose Amiotrófica Lateral/genética , Prognóstico , Doenças Neurodegenerativas/genética , Estudos de Associação Genética , Testes Genéticos
9.
Exp Dermatol ; 33(1): e14862, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37350230

RESUMO

Tapinarof is an aryl hydrocarbon receptor (AHR) ligand which is used to treat plaque psoriasis in adults. However, the underlying mechanism is not yet fully understood. In this study, we applied two of the most studied psoriasis mouse models: topical application of imiquimod (IMQ) and subcutaneous injection of IL-23. Although both models successfully induced psoriasis-like lesions in mice, tapinarof had a completely opposite effect on the two models. Tapinarof decreased the expression of multiple essential cytokines involved in the pathological IL-23/IL-17/IL-22 axis and ameliorated IMQ-induced psoriatic dermatitis, inhibiting keratinocyte proliferation and abnormal differentiation. However, in the IL-23-injection-model, tapinarof instead aggravated the disease. Here, tapinarof increased epidermal thickness and differentiated epidermal dysplasia in mice. Our data suggest that tapinarof may have different effects on varied types of psoriasis.


Assuntos
Psoríase , Estilbenos , Animais , Camundongos , Imiquimode , Psoríase/metabolismo , Resorcinóis/efeitos adversos , Interleucina-23 , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
11.
Transl Psychiatry ; 13(1): 329, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880287

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms that consist of social deficits and repetitive behaviors. Unfortunately, no effective medication is available thus far to target the core symptoms of ASD, since the pathogenesis remains largely unknown. To investigate the pathogenesis of the core symptoms in ASD, we constructed Shank1 P1812L-knock-in (KI) mice corresponding to a recurrent ASD-related mutation, SHANK1 P1806L, to achieve construct validity and face validity. Shank1 P1812L-KI heterozygous (HET) mice presented with social deficits and repetitive behaviors without the presence of confounding comorbidities. HET mice also exhibited downregulation of metabotropic glutamate receptor (mGluR1) and associated signals, along with structural abnormalities in the dendritic spines and postsynaptic densities. Combined with findings from Shank1 R882H-KI mice, our study confirms that mGluR1-mediated signaling dysfunction is a pivotal mechanism underlying the core symptoms of ASD. Interestingly, Shank1 P1812L-KI homozygous (HOM) mice manifested behavioral signs of impaired long-term memory rather than autistic-like core traits; thus, their phenotype was markedly different from that of Shank1 P1812L-KI HET mice. Correspondingly, at the molecular level, Shank1 P1812L-KI HOM displayed upregulation of AMPA receptor (GluA2)-related signals. The different patterns of protein changes in HOM and HET mice may explain the differences in behaviors. Our study emphasizes the universality of mGluR1-signaling hypofunction in the pathogenesis of the core symptoms in ASD, providing a potential target for therapeutic drugs. The precise correspondence between genotype and phenotype, as shown in HOM and HET mice, indicates the importance of reproducing disease-related genotypes in mouse models.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Transtorno Autístico/genética , Regulação para Baixo , Receptores de Glutamato Metabotrópico/genética , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
12.
Phenomics ; 3(5): 457-468, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881316

RESUMO

Dermatomyositis (DM) is a heterogeneous autoimmune disease associated with numerous myositis specific antibodies (MSAs) in which DM with anti-melanoma differentiation-associated gene 5-positive (MDA5 + DM) is a unique subtype of DM with higher risk of developing varying degrees of Interstitial lung disease (ILD). Glycosylation is a complex posttranslational modification of proteins associated with many autoimmune diseases. However, the association of total plasma N-glycome (TPNG) and DM, especially MDA5 + DM, is still unknown. TPNG of 94 DM patients and 168 controls were analyzed by mass spectrometry with in-house reliable quantitative method called Bionic Glycome method. Logistic regression with age and sex adjusted was used to reveal the aberrant glycosylation of DM and the association of TPNG and MDA5 + DM with or without rapidly progressive ILD (RPILD). The elastic net model was used to evaluate performance of glycans in distinguishing RPLID from non-RPILD, and survival analysis was analyzed with N-glycoslyation score by Kaplan-Meier survival analysis. It was found that the plasma protein N-glycome in DM showed higher fucosylation and bisection, lower sialylation (α2,3- not α2,6-linked) and galactosylation than controls. In MDA5 + DM, more severe disease condition was associated with decreased sialylation (specifically α2,3-sialylation with fucosylation) while accompanying elevated H6N5S3 and H5N4FSx, decreased galactosylation and increased fucosylation and the complexity of N-glycans. Moreover, glycosylation traits have better discrimination ability to distinguish RPILD from non-RPILD with AUC 0.922 than clinical features and is MDA5-independent. Survival advantage accrued to MDA5 + DM with lower N-glycosylation score (p = 3e-04). Our study reveals the aberrant glycosylation of DM for the first time and indicated that glycosylation is associated with disease severity caused by ILD in MDA5 + DM, which might be considered as the potential biomarker for early diagnosis of RPILD and survival evaluation of MDA5 + DM. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00096-z.

13.
Arthritis Res Ther ; 25(1): 194, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798786

RESUMO

OBJECTIVES: Ankylosing spondylitis (AS) is a chronic inflammatory disease that mainly affects the sacroiliac joint and spine. However, the real mechanisms of immune cells acting on syndesmophyte formation in AS are not well identified. We aimed to find the key AS-associated cytokine and assess its pathogenic role in AS. METHODS: A protein array with 1000 cytokines was performed in five AS patients with the first diagnosis and five age- and gender-matched healthy controls to discover the differentially expressed cytokines. The candidate differentially expressed cytokines were further quantified by multiplex protein quantitation (3 AS-associated cytokines and 3 PDGF-pathway cytokines) and ELISA (PDGFB) in independent samples (a total of 140 AS patients vs 140 healthy controls). The effects of PDGFB, the candidate cytokine, were examined by using adipose-derived stem cells (ADSCs) and human fetal osteoblast cell line (hFOB1.19) as in vitro mesenchymal cell and preosteoblast models, respectively. Furthermore, whole-transcriptome sequencing and enrichment of phosphorylated peptides were performed by using cell models to explore the underlying mechanisms of PDGFB. The xCELLigence system was applied to examine the proliferation, chemotaxis, and migration abilities of PDGFB-stimulated or PDGFB-unstimulated cells. RESULTS: The PDGF pathway was observed to have abnormal expression in the protein array, and PDGFB expression was further found to be up-regulated in 140 Chinese AS patients. Importantly, PDGFB expression was significantly correlated with BASFI (Pearson coefficient/p value = 0.62/6.70E - 8) and with the variance of the mSASSS score (mSASSS 2 years - baseline, Pearson coefficient/p value = 0.76/8.75E - 10). In AS patients, preosteoclasts secreted more PDGFB than the healthy controls (p value = 1.16E - 2), which could promote ADSCs osteogenesis and enhance collagen synthesis (COLI and COLIII) of osteoblasts (hFOB 1.19). In addition, PDGFB promoted the proliferation, chemotaxis, and migration of ADSCs. Mechanismly, in ADSCs, PDGFB stimulated ERK phosphorylation by upregulating GRB2 expression and then increased the expression of RUNX2 to promote osteoblastogenesis of ADSCs. CONCLUSION: PDGFB stimulates the GRB2/ERK/RUNX2 pathway in ADSCs, promotes osteoblastogenesis of ADSCs, and enhances the extracellular matrix of osteoblasts, which may contribute to pathological bone formation in AS.


Assuntos
Proteínas Proto-Oncogênicas c-sis , Espondilite Anquilosante , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Citocinas/metabolismo , Proteína Adaptadora GRB2/metabolismo , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Coluna Vertebral/metabolismo , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-37824088

RESUMO

BACKGROUND: Aging is characterized by loss of resilience, the ability to resist or recover from stressors. Network analysis has shown promise in investigating dynamic relationships underlying resilience. We aimed to use network analysis to measure resilience in a longitudinal cohort of older adults and quantify whole-system vulnerabilities associated with frailty. METHODS: We used data from the Rugao Longitudinal Ageing Study, including 71 biomarkers from participants classified as robust, prefrail, or frail. We quantified biomarker correlations and topological parameters. Additionally, we proposed propagation models to simulate damage and recovery dynamics, investigating network resilience under various conditions. RESULTS: We classified 1754 individuals into robust (n=369), prefrail (n=1103), and frail (n=282) groups with 71 biomarkers. Several biomarkers were linked to frailty, including those related to blood pressure, ECG, kidney function, platelets, white blood cells. Each frailty stage was associated with increased network correlations. The frail network showed increased average degree and connectance, decreased average path length and diameter, and reduced modularity compared to robust and prefrail networks. Hub biomarkers, particularly ß2-microglobulin and platelet count, played a significant role, potentially propagating dysfunction across physiological systems. Simulations revealed that damage to critical hubs led to longer recovery times in the frail network than robust and prefrail networks. CONCLUSION: Network analysis could serve as a valuable tool for quantifying resilience and identifying vulnerabilities in older adults with frailty. Our findings contribute to understanding frailty-related physiological disturbances and offer potential for personalized healthcare interventions targeting resilience in older populations.

15.
Nat Biotechnol ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679543

RESUMO

Characterization and integration of the genome, epigenome, transcriptome, proteome and metabolome of different datasets is difficult owing to a lack of ground truth. Here we develop and characterize suites of publicly available multi-omics reference materials of matched DNA, RNA, protein and metabolites derived from immortalized cell lines from a family quartet of parents and monozygotic twin daughters. These references provide built-in truth defined by relationships among the family members and the information flow from DNA to RNA to protein. We demonstrate how using a ratio-based profiling approach that scales the absolute feature values of a study sample relative to those of a concurrently measured common reference sample produces reproducible and comparable data suitable for integration across batches, labs, platforms and omics types. Our study identifies reference-free 'absolute' feature quantification as the root cause of irreproducibility in multi-omics measurement and data integration and establishes the advantages of ratio-based multi-omics profiling with common reference materials.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37665747

RESUMO

OBJECTIVES: Innate immunity significantly contributes to systemic sclerosis (SSc) pathogenesis. TLR8 is an important innate immune mediator that is implicated in autoimmunity and fibrosis. However, the expression, mechanism of action, and pathogenic role of TLR8 in SSc remain unclear. The aim of this study was to explore the roles and underlying mechanisms of TLR8 in SSc. METHODS: The expression of TLR8 was analyzed based on a public dataset and then verified in skin tissues and skin fibroblasts of SSc patients. The role of TLR8 in inflammation and fibrosis was investigated using a TLR8-overexpression vector, activator (VTX-2337), inhibitor (cu-cpt-8m), and TLR8 siRNA in skin fibroblasts. The pathogenic role of TLR8 in skin inflammation and fibrosis was further validated in a bleomycin (BLM)-induced mouse skin inflammation and fibrosis model. RESULTS: TLR8 levels were significantly elevated in SSc skin tissues and myofibroblasts, along with significant activation of the TLR8 pathway. In vitro studies showed that overexpression or activation of TLR8 by a recombinant plasmid or VTX-2337 upregulated IL-6, IL-1ß, COL I, COL III, and α-SMA in skin fibroblasts. Consistently, both TLR8-siRNA and cu-cpt-8m reversed the phenotypes observed in TLR8-activating fibroblasts. Mechanistically, TLR8 induces skin fibrosis and inflammation in a manner dependent on the MAPK, NF-κB, and SMAD2/3 pathways. Subcutaneous injection of cu-cpt-8m significantly alleviated BLM-induced skin inflammation and fibrosis in vivo. CONCLUSION: TLR8 might be a promising therapeutic target to improve the treatment strategy for SSc skin inflammation and fibrosis.

17.
J Dermatol Sci ; 111(3): 109-119, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37661474

RESUMO

BACKGROUND: Systemic Sclerosis (SSc) is an autoimmune disease characterized by vascular and immune system dysfunction, along with tissue fibrosis. Our previous study found GRB2 was downregulated by salvianolic acid B, a small molecule drug that attenuated skin fibrosis of SSc. OBJECTIVES: Here we aim to investigate the role of GRB2 in SSc. METHODS: The microarray data of SSc skin biopsies in Caucasians were obtained from the Gene Expression Omnibus (GEO) database. The expression of GRB2 was further detected in Chinese SSc and healthy controls. Bleomycin (BLM)-induced skin fibrosis mice were used to explore how GRB2 downregulation affected fibrosis. The apoptosis of EA.hy926 endothelial cells was induced by H2O2 and apoptosis ratio was measured by flow cytometric. Transcriptome and phosphoproteomic analyses were performed to explore the regulated pathway. RESULTS: The expression of GRB2 was significantly enhanced in SSc patient skin, 1.51-fold in Caucasians and 1.40-fold in Chinese. Double immunofluorescence staining showed the endothelial cells of SSc patient's skin highly expressed GRB2. The in vivo study revealed that GRB2 knockdown alleviated skin fibrosis and apoptosis of endothelial cells in BLM mouse skin. The in vitro study showed that GRB2 downregulation inhibited the apoptosis of EA.hy926 and protected them from H2O2-induced hyperpermeability. Moreover, transcriptome and phosphoproteomic analysis suggested the focal adhesion pathway was enriched in GRB2 siRNA transfected endothelial cells. CONCLUSIONS: Our results demonstrated GRB2 highly expressed in endothelial cells of SSc skin, and inhibiting GRB2 could effectively attenuate BLM-induced skin fibrosis and endothelial cell apoptosis. GRB2 is expected to be a new therapeutic target for SSc.


Assuntos
Células Endoteliais , Escleroderma Sistêmico , Animais , Humanos , Camundongos , Apoptose , Bleomicina/toxicidade , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Fibrose , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/farmacologia , Peróxido de Hidrogênio/metabolismo , Pele/patologia
18.
Skin Res Technol ; 29(9): e13454, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37753695

RESUMO

BACKGROUND: Evidence suggests that sebum content is important in skin disorders such as acne. However, sebum levels change depending on the external environment, and quantifying skin sebum levels is challenging. Here, we propose an optimal method for quantifying the facial sebum level. MATERIALS AND METHODS: Four hundred and sixty participants (160 males and 300 females) aged 20-40 were enrolled in this study. A Sebumeter SM 810 was used to measure the sebum level at five facial locations: the forehead, the chin, the left cheek, the right cheek, and the nose. The participants were divided into two groups; one group underwent a one-time measurement (n = 390, male: female = 120: 270), and the other underwent three consecutive measurements (n = 70, male: female = 40: 30). The casual sebum level (CSL) was measured in all patients after a 30-min acclimatization; subsequently, the sebum removal process was conducted, followed by a resting period of 1 h to determine the sebum excretion rate (SER). Spearman's correlation analysis and the Wilcoxon signed-rank test were used to compare the sebum level consistency and differences between the groups. RESULTS: Although three consecutive measurements better reflected the sebum content, the one-time measurement also represented the relative sebum level. One hour after sebum removal, the sebum level recovered to 70%-90%; thus, this method was applicable for use in SER quantification. Of the five testing points, the sebum content was highest in the nose and lowest in the cheeks (both left and right). In addition, the cheeks were the most stable sites in terms of testing points, testing times, and CSL/SER values. A one-time measurement of the CSL could represent the SER 1 h after the sebum removal. In our cohort, the sebum level of males with oily skin was decreased at age 32-35, and that of males with non-oily skin increased at 28-35. The opposite trend was observed in female participants. CONCLUSION: Sebum measurement methods were assessed, including testing times, indices (interval of time) and sites in a conditioned external environment. A one-time measurement of the CSL 1 h after sebum removal was sufficient to determine the sebum level and SER, and the cheeks are recommended as the testing site. Sex and skin type differences were observed in sebum level changes with age.


Assuntos
Face , Sebo , Humanos , Feminino , Masculino , Adulto , Bochecha , Nariz , Testa
19.
Adv Healthc Mater ; 12(29): e2301809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37571957

RESUMO

3D printing has been widely applied for preparing artificial blood vessels, which will bring innovation to cardiovascular disorder intervention. However, the printing resolution and anti-infection properties of small-diameter vessels (Φ < 6 mm) have been challenging in 3D printing. The primary objective of this research is to design a novel coaxial 3D-printing postprocessing method for preparing small-size blood vessels with improved antibacterial and angiogenesis properties. The coaxial printing resolution can be more conveniently improved. Negatively charged polyvinyl alcohol (PVA) and alginate (Alg) interpenetrating networks artificial vessels are immersed in positively charged chitosan (CTS) solution. Rapid dimensional shrinkage takes place on its outer surface through electrostatic interactions. The maximum shrinkage size of wall thickness can reach 61.2%. The vessels demonstrate strong antibacterial properties against Escherichia coli (98.8 ± 0.5%) and Staphylococcus aureus (97.6 ± 1.4%). In rat dorsal skin grafting experiments, Cu2+ can promote angiogenesis by regulating hypoxia-inducible factor-1 pathway. No artificial blood vessel blockage occurs after 5 days of blood circulation in vitro.


Assuntos
Antibacterianos , Quitosana , Ratos , Animais , Antibacterianos/farmacologia , Quitosana/farmacologia , Pele , Escherichia coli , Staphylococcus aureus , Impressão Tridimensional
20.
Sci Rep ; 13(1): 13183, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580529

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive respiratory disease. Arguably, the complex interplay between immune cell subsets, coupled with an incomplete understanding of disease pathophysiology, has hindered the development of successful therapies. Despite efforts to understand its pathophysiology and develop effective treatments, IPF remains a fatal disease, necessitating the exploration of new treatment options. Mesenchymal stromal/stem cell (MSC) therapy has shown promise in experimental models of IPF, but further investigation is needed to understand its therapeutic effect. This study aimed to assess the therapeutic effect of adipose-derived mesenchymal stem cells in a bleomycin-induced pulmonary fibrosis model. First, MSC cells were obtained from mice and characterized using flow cytometry and cell differentiation culture methods. Then adult C57BL/6 mice were exposed to endotracheal instillation of bleomycin and concurrently treated with MSCs for reversal models on day 14. Experimental groups were evaluated on days 14, 21, or 28. Additionally, lung fibroblasts challenged with TGF-ß1 were treated with MSCs supernatant or MSCs to explore the mechanisms underlying of pulmonary fibrosis reversal. Mesenchymal stem cells were successfully isolated from mouse adipose tissue and characterized based on their differentiation ability and cell phenotype. The presence of MSCs or their supernatant stimulated the proliferation and migration of lung fibrotic cells. MSCs supernatant reduced lung collagen deposition, improved the Ashcroft score and reduced the gene and protein expression of lung fibrosis-related substances. Bleomycin-challenged mice exhibited severe septal thickening and prominent fibrosis, which was effectively reversed by MSCs treatment. MSC supernatant could suppress the TGF-ß1/Smad signaling pathway and supernatant promotes fibroblast autophagy. In summary, this study demonstrates that MSCs supernatant treatment is as effective as MSCs in revert the core features of bleomycin-induced pulmonary fibrosis. The current study has demonstrated that MSCs supernatant alleviates the BLM-induced pulmonary fibrosis in vivo. In vitro experiments further reveal that MSC supernatant could suppress the TGF-ß1/Smad signaling pathway to inhibit the TGF-ß1-induced fibroblast activation, and promotes fibroblast autophagy by Regulating p62 expression. These findings contribute to the growing body of evidence supporting the therapeutic application of MSCs in cell therapy medicine for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Mesenquimais , Adipócitos , Bleomicina/toxicidade , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/terapia , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...